Everyone Smiles Here. Esh Church of England Primary School.

ESH Church of England (Aided) Primary School

Progression in Calculation Policy

Updated January 2021

Introduction

From Foundation Stage to Year 6

Representations

Key to successful implementation of a school calculation policy is consistent use of representations (model and images that support conceptual understanding of the mathematics) and this policy promotes a range of relevant representations, across the primary years. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Numicon, counters, tens frames, base 10, physical objects), and then pictorial (e.g. Arrays, place value counters) to then facilitate abstract working using formal written methods. This policy guides teachers through an appropriate progression of representations. If at any point a pupil is struggling, they should revert to familiar pictorial and/or concrete materials/ representations as appropriate. Whilst a mathematically fluent child will be able to choose the most appropriate representation and procedure to carry out a calculation, whether written or mental, teachers should support pupils with carefully selected representations that underpin calculation methods (as detailed in this policy), and ensure there is consistency across year groups. The concrete, pictorial, abstract approach used to teach calculation methods for each of the four rules of number is outlined below with a range of models and images that underpin calculation in most circumstances.

Progression in Calculation

The Esh Church of England Primary School calculation policy promotes particular methods and procedures with particular representations alongside to support understanding of calculation, in order to meet National Curriculum requirements (use of column methods with regrouping from Year 3 onwards for all four operations, including long multiplication in years 5 and 6 and long division in Year 6). Teachers should ensure consistency in both procedure and conceptual understanding to ensure fluency and confidence with written methods. This policy guides teachers in the progression for each operation to ensure smooth transition.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract	
Combiningtwopartstomakeawhole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4+3=7 Fourisapart,3isapartandthewhole is seven.	
Counting on using number lines using cubes or Numicon.	Abarmodelwhichencouragesthechildrentocounton, rather than count all.	Theabstractnumberline: What is 2 more than 4? What isthesum of2and 4? What isthe totalof 4 and2? 4 + 2	
	?	4 5 6	

Calculation policy: subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract	
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross outthe correct amount. The barmodel can also be used.	4-3 = = 4 - 3	
4-3=1	XXXX XXX	4 3 ? 4 ? 3	
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6-2=4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line	
	12345678910	012345678910	
		46	

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which theyhaveusedorusethebarmodelto illustratewhat they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is Children to explore why 9-6=8-5=7-4 have the same difference.	
Making 10 using ten frames. 14 - 5 -4 $-1-4$ -1	Children to present the ten frame pictorially and discuss what they did to make 10.	Children toshowhowtheycanmake 10by partitioning the subtrahend. 14 - 5 = 9 4 1 14 - 4 = 10 10 - 1 = 9	
Column method using base 10. 48-7 10s 1s 48-7 48-7 4 1	Children to represent the base 10 pictorially. $ \begin{array}{c c} 10s & 1s \\ \hline 1111 & \vdots \\ \hline 4 & 1 \end{array} $	Column method or children could count back 7. 48 - 7 41	

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside an umberlinee.g.:	Abstractnumberlineshowingthree jumps of four. $3 \times 4 = 12$
Cuisenaire rods can be used too.	0 4 8 12	0 4 8 12

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition tomultiply using Numicon, base 10orCuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially. $\underbrace{10s 1s}_{1 0}$	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $ \setminus 3 \times 3 = 9$ 20 3 $60 + 9 = 6923\frac{\times 3}{69}$

Calculation policy: Division

Keylanguage: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	$6 \div 2 = 3$ 3 Children should also be encouraged to use their 2 times table's facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ -2 -	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

Short division using place value counters to group. $615 \div 5$

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. Howmanygroupsof5onescanyoumakewith15ones?

Long division using place value counters 2544 ÷ 12

1000s	100s	10s	1s 0000	We can' groups o
1000s	100s	10s	1s 0000	We car into gro with 1 l

Representtheplacevaluecounterspictorially.

Children to the calculation using the short division scaffold.

<u>123</u> 5⁶¹15

Ve can't group 2 thousands into roups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how canyoudivide615by5withoutusing short division?	I have £615 and share it equally between5bankaccounts. How much will be in each account?	5 615	What is the calculation? What is the answer?		
615 500 100 15	615 pupils needtobe put into 5 groups. Howmanywillbeineach group?	615 ÷ 5 =	100s	10s	1s 00000 00000 00000