ESH
 Church of England (Aided)
 Primary School

Progression in Calculation Policy

Updated January 2021

Introduction

From Foundation Stage to Year 6

Representations

Key to successful implementation of a school calculation policy is consistent use of representations (model and images that support conceptual understanding of the mathematics) and this policy promotes a range of relevant representations, across the primary years. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Numicon, counters, tens frames, base 10, physical objects), and then pictorial (e.g. Arrays, place value counters) to then facilitate abstract working using formal written methods This policy guides teachers through an appropriate progression of representations. If at any point a pupil is struggling, they should revert to familiar pictorial and/or concrete materials/ representations as appropriate. Whilst a mathematically fluent child will be able to choose the most appropriate representation and procedure to carry out a calculation, whether written or mental, teachers should support pupils with carefully selected representations that underpin calculation methods (as detailed in this policy), and ensure there is consistency across year groups. The concrete, pictorial, abstract approach used to teach calculation methods for each of the four rules of number is outlined below with a range of models and images that underpin calculating in that year group. It is not an exhaustive collection, and applies to both mental and written calculation in most circumstances.

Progression in Calculation

The Esh Church of England Primary School calculation policy promotes particular methods and procedures with particular representations alongside to support understanding of calculation, in order to meet National Curriculum requirements (use of column methods with regrouping from Year 3 onwards for all four operations, including long multiplication in years 5 and 6 and long division in Year 6). Teachers should ensure consistency in both procedure and conceptual understanding to ensure fluency and confidence with written methods. This policy guides teachers in the progression for each operation to ensure smooth transition.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
	chemen	${ }_{\text {a }}^{\text {and }}$
咟		8
.amameemmmen		
\%.123.667.900	4 117	
Boo Boor	?	456
दिकी किढे		

Regroupingtomake 10;usingtenframes and counters/cubes or using Numicon. \qquad 080	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + Ousing base 10. Continue to develop understanding of partitioning and place value. $41+8$	Childrentorepresentthebase10e.g.linesfortensand dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\frac{41}{4}$
TO+TOusing base 10. Continue to develop understanding of partitioning and place value. $36+25$	Childrentorepresent thebase10 inaplacevalue chart.	Looking for ways to make 10.

Use of place value counters to addHTO + TO, HTO + HTOetc. Whenthereare 10 onesinthe1scolumn-we exchangefor 1 ten, whenthereare 10 tensinthe10s column- we exchange for 1 hundred.

100s	10s	1s
-®	0000	000
-®*		-08

Children to represent the counters in a place value chart, circling when they make an exchange.

Conceptual variation; different ways to ask children to solve $21+34$

Word problems:

Inyear3,thereare21 childrenandin year 4, there are 34 children. Howmanychildren intotal?	21
$21+34=55$. Prove it	

Missing digit problems:

$10 \mathbf{s}$	1s
	$?$
$?$	5

Calculation policy: subtraction

Key language: take away, less than, the difference, subtract. minus, fewer. decrease,

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10.
48-7

Children to draw the cubes/other concrete objects which theyhaveusedorusethebarmodelto illustratewhat they need to calculate.

Childrento presentthe ten frame pictorially anddiscuss what they did to make 10.

Children to represent the base 10 pictorially.

Findthe differencebetween8and5. $8-5$, the difference is
Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children toshowhowtheycanmake 10by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column method or children could count back 7 .

Calculation policy:Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Calculation policy: Division

Keylanguage:share, group, divide, divided by, half.

Shortdivisionusingplacevalue counterstogroup.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tenscanyoumake with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. Howmanygroupsof5onescanyoumakewith15ones?

Representtheplacevaluecounterspictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	Is
\bigcirc	-0®0	0000	0000
1000s	100s	10s	Is
		-000	-®刃ర

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds	
into groups of 12 which leaves	
with 1 hundred.	12
	$\frac{02}{22544}$

1000s	100s	10s	Is
			उतणర

1000s	100s	10s	1s
		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	

	0212
After exchanging the 2 tens, we 12	$1 2 \longdiv { 2 5 4 4 }$
have 24 ones. We can group 24 ones	
into 2 group of 12, which leaves no remaind	14
	24
	24

Conceptual variation; differentwaystoask childrentosolve $615 \div 5$

Using the part whole model below, how canyoudivide615by5withoutusing short division?

I have $£ 615$ and share it equally between5bank accounts. How much will be in each account?

615 pupils needtobe put into 5 groups. Howmanywillbeineach group?
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
["] = $615 \div 5$

What is the calculation?
What is the answer?

100s	10s	15
		$\begin{array}{\|l} \hline 111 \\ 11101 \\ 111011 \end{array}$

